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We describe a method for introducing gauge fields into nonlocal Lagrangians, and for deriving the re-
sulting Feynman rules. The method is applied in detail to the nonlocal chiral quark model. In particu-
lar we describe how to calculate coupling constants of the effective chiral Lagrangian that results when

the quarks are integrated out of the theory.

I. INTRODUCTION

Recently the nonlocal chiral quark model [1,2]
(NCQM) has been used to derive an effective chiral La-
grangian for the pseudoscalar mesons (the 7’s, K’s, and
7), and the results are in surprisingly good agreement
with experiment. Since such calculations require the
evaluation of Feynman graphs with external gauge fields,
it is necessary to be able to introduce gauge fields into the
nonlocal Lagrangian so as to produce a gauge-invariant
nonlocal Lagrangian. A method for doing this is well
known [3], but a method for determining the Feynman
rules for the nonlocal gauge interactions seems not to
have been discussed in the literature.

In this paper we will describe a method for gauging
nonlocal Lagrangians, and for deriving the resulting
Feynman rules. In Sec. II we discuss how the method
works for the simple case of a local Lagrangian. In Secs.
III and IV we will apply the method to the NCQM and
derive Feynman rules for diagrams involving one gauge
field line. In Sec. V we discuss Feynman vertices involv-
ing two gauge field couplings. Section VI covers the
derivation of the effective chiral Lagrangian for the mod-
el. In the Appendix we present some mathematical re-
sults that are required in the previous sections.

II. PATH EXPONENTIALS

As a warm-up exercise we will gauge a local theory of
free quarks in a slightly unusual way. In Euclidean
space, the Lagrangian for quarks interacting with pho-
tons can be written down directly (assuming minimal
coupling):

L=19(x)y"[d,—ieQV ,(x)]P(x)+ {F, F* , (1)
where Q is the charge matrix of the quarks. This La-

grangian is invariant under the infinitesimal transforma-
tions

Y(x)=[1+ia(x)QY'(x),

P(x)=9'(x)[1—ia(x)Q] , 2)
V,(x)= V;L(x)+ %aya(x) .

We will now try to obtain this result with a method

that can be generalized to the nonlocal case. We will use
the path exponential introduced by Bloch [4], and the
path-ordered exponential introduced by Wilson [3]. The
path ordering is not essential for electromagnetic gauge
fields, since U(1) is an Abelian group, but it will be neces-
sary for including external weak gauge fields.

Consider the free quark action

S= [d*x d* §(x)8(x —p)BY(y)

= [d* d% P —8,8(x =) () . (3)

This action can be gauged by the introduction of an ex-
ponential of a line integral of the gauge field. The useful
feature of the path exponential for nonlocal interactions
is its transformation property. Under the gauge transfor-
mation defined in Eq. (2), the path exponential transforms
as

exp

—ieQ [V, dw” ] = [1+ia(x)Q]
X exp [—ieQ nyi,dw"]

X[1—ialy)Q] . 4)

(This simple transformation property is maintained in the
non-Abelian case by path ordering.) Thus, ignoring the
F,, F"’ term, we have the gauge-invariant action

S,= [ d*x d*y P(x)[—8,8(x —)]
Xexp(—ieQ ["V,dw")¥(y)
= [ d*x d% P(x)8(x —)B,
X exp [—ieQ nyvde]tp(y) . (5)
This looks very nice but the derivative of the line integral

is ambiguous, and must be carefully defined. Following
Mandelstam [5] we introduce the notation

Ixy.p)= ["V,dw”, (6)

where p explicitly denotes the dependence on the path
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FIG. 1. Extension of the path used in calculating the deriva-
tive of the line integral.

taken from x to y. Then the derivative may be defined by
(5]

lim dy

(x,y,p)
dyﬂ—»O

Iz : 1
ayH
= lim I(x,y +dy,,p')—I1(x,y,p), (7
dy‘ua()
where p’ is the path obtained from p by adding the exten-

sion dy,, to the y end, as shown in Fig. 1.
Using the definition in Eq. (7), we have

&I(x,y,p)= V), ®)
the important point being that the derivative of the line
integral does not depend on the path used in defining it.
Expanding the exponential in Eq. (5), it is easy to see that
if 8(x —y)I (x,y,p)=0 (i.e., if, as x —y, the path p shrinks
to a point, and not to a closed loop), then

S, = [ d*x d*y Px)8(x —p)y*(3,—ieQV, (y) . ()

Thus, we recover minimal coupling from the introduction
of the path exponential if we use the correct prescriptions
for derivatives and for zero-length paths. We will use
path-ordered exponentials, with these same prescriptions,
to introduce external electroweak gauge fields to the
NCQM.

III. THE GAUGED NONLOCAL MASS

For the purposes of this paper, the relevant aspects of
the NCQM may be summarized by the following nonlo-
cal Lagrangian [1,2] for N flavors of quarks and N2—1
Goldstone boson (GB) fields:

Lncom(%:p)=1(x)8(x —p)B(y) +%(x)Z (x,)P(y) ,

(10)
P
u
q
p
FIG. 2. The photon-quark-quark vertex: iel'*(p,q,p’).

Straight lines represent quarks; the wavy line designates the
photon.

S

where
S () =3(x —p) |1— =y [mlx)+m(y)]
FO

— L 20)+ )+ m)m(y)

2F3

+a(y)m(x)]+0 () | .

(11)
The GB fields are contained in the matrix
m(z)=A7%z) . (12)

The repeated index in Eq. (12) is implicitly summed over,
and {A%} are the generators of SU(N), with
TrAA’=18%. The constant F, is determined by proper-
ly normalizing the 7 field [2]. This model Lagrangian
contains a nonlocal dynamical quark mass =Z(x —y),
which is expected to be present in an asymptotically free
gauge theory. The dynamical mass is an order parameter
for spontaneous chiral-symmetry breaking in gauge
theories, and in the model the associated Goldstone bo-
sons appear as fluctuations of this nonlocal order parame-
ter. For more details about the model, the reader is re-
ferred to Refs. [1] and [2].

First we will concentrate on coupling photons to
quarks with a nonlocal dynamical mass. The action
without photons is

S = [d* Py a,px)+ [dix dy Px)S(x —pw(y) .
(13)

With the path-ordered exponential prescription (and ig-
noring the F,,,F*¥ term again) the gauged action is

S,= [ d* Px)y*(d,—ieQV, (x)
+ fd“x d*y ¥(x)2(x —y)

Xexp | —ieQ nyV dwvltﬁ(y) . (14)

We will refer to the local and nonlocal terms as S| and
Sni respectively. Since Feynman rules for nonlocal
gauge theories are not well known, we will spend some
time in deriving the amplitude for a photon to couple to
two quarks as shown in Fig. 2.

The local contribution to the amplitude is given by

83s,
8V, (x)8%(»)89(z) v, =0

iel't (y,x,z)= (15)

Fourier transforming with e’(?’? ~P» ~9%) and dropping the
usual (27)*8(p’—p —q), we find

el (p,q,p +q)=ieQy,, . (16)

The nonlocal part is harder. First, it will be advanta-
geous to perform a derivative expansion of Sy . Let



&

F(x,y)=exp(—ieQ [’V dw () ;

then by Fourier transforming we have

_ d%kdp -
sNL—owk)z(p)F

Taylor expanding 2(p) gives

d*k d*
SNL=f pl/’

(k—p,p) . (17)

(27)8
x| ;L,z“'koxp%" Flk—pp). (18)
n=0 :

Fourier transforming back to position space gives

x)8¢(y')8¢(z)

ieT§(y',x,z2)=—

1

=ieQ [d'y 8(z—y) | 3 —-3"(0X
n=0 """

e
=ie > 'y, ,(»',x,2) .
n=0

By Fourier transforming with e’(?2 72"~ and perform-

ing some tedious differentiation we find

ieTH,  (p.gp +q)= —eQ—nl—'E(")(O)(2p Fqrf,, (@2

where
fO:O’ f1:1 ’
f2=(g+p’+p?*, (23)

f3=(g+p)+(q+p)p*+p*
and, in general, for n >0,
fu=Fu-rlg +py+p2" 1. (24)

For this to be useful we must be able to sum the entire
series given in Eq. (21). To do this we will make use of
some proofs by induction which are relegated to the ap-
pendix. In the Appendix it is shown that

(g +p)*"—p>=(q*+2p-q)f, . (25)
Inserting this result in Eq. (22) we find

ier,’}(’L(P,q,P +q)
© 2n__ . 2n
——eQ(2p+qr 3 —-3m(o){4 R =p
n=o0n: 2p-q+gq
=_ te!lz [=(p
2p-q +q
We may check that the full vertex T'*=T% + Tk,
the Ward-Takahashi (WT) identity

g)—2(p)] . (26)

satisfies

—a)
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d*kd* d’kd’p
d*x d% d*z el Fk =P =Xkl (x)
=/ v 2m)? (x
X |3 L3N —are® [F(zy), (19)
n=0 *
where the derivative acts only inside the large
parentheses. Finally, integrating by parts we obtain
L= [ d*x d* 8(x —y)Pix
> Lxo) a2y
< |2 o
X exp —-ilevade]tﬁ(y). (20)
So the nonlocal contribution to the amplitude is
J78(x —w)dw sy’ —y)
21
l
—ig,T"p,q,p" ) =S "' (p +9)Q —0S "'(p) . (2)

Using the inverse quark propagator in the NCQM,
S~ Up)=ip+3(p) both sides reduce to
—iQf+Q[Z(p +q)—Z(p)].

IV. PHOTONS AND GOLDSTONE BOSONS

Emboldened by this last result, we may consider calcu-
lating the amplitudes which involve photons and GB’s.

The gauge transformation of the GB field is given by
T A?=expliaQ)m' A%exp(—iaQ) . (28)

Thus, we can easily write down the term in the gauged
Lagrangian involving one GB:

L (x,9)= P00y sZ(x —)
Fy
X | w(x)exp —ilevadw"]
+exp —ileyVde"]ﬂ'(y) P(y) . (29)

Following a very similar analysis as that given above,
we find that the vertex which couples one photon, one
GB, and two quarks, depicted in Fig. 3, is given by
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FIG. 3. The photon-GB-quark-quark vertex:

ieI'*“%p,q,k,p +q + k). The dashed line represents the GB.

iel*%p,q,k,p +q +k)

__leys
= 7

(2p +g)*
2p-q +q°

AQ [Z(p +q)—2(p)]

[2(p +Kk)+q]*

+QOA®
Q 2p +k)q +q*

X[2(p +k +q)—Z(p +k)] (30)

The equations get cumbersome for two GB’s, but intro-
ducing the notation

ieF“’”’b(p,q,kl,kz,P +q+k;tk,)

2F3
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FIG. 4. The two-GB-photon—quark—quark vertex:

ier“’a'b(qu,knkz,P +q +kl +k2 )

E =exp

—ilevadw"] ,
h 31
ETzexp

—ieQ fovdw"] ,
y
we find that the term in the gauged Lagrangian with two

GB fields is

—1 —
Lgﬂz(x,y)= ;ﬁgtﬁ(x)i(x —y)
X [72(x)E + Em(y)+m(x)Em(y)

+Er()E mn(x)El() . (32)

The vertex with one photon, two GB’s, and two quarks,
shown in Fig. 4, is

"
A0+ a0h) Q2L (55 1 g)—3(p))
2p-q+q

+Q (AAL+A0A9)

20p +k,+ky)-q+q?

+ (QAAL+AALQ +APQAT—AQAY)

+(QAPAT+APAQ + A2Q AL —ALQAY)

V. NON-ABELIAN

(Sp +k,+k,+q)—3(p +k, +k,))

[2(p +k;)+ql¥

W(Z(p +ki+q)—2(pt+k,))
-

[2(p +k,y)+gq]*

W(E(p +ky,+q)—32(p +k,)) | .
2

(33)

GAUGE FIELDS

In this section we discuss the inclusion of external non-Abelian vector gauge fields. The considerations of Secs.
IT-1IV still apply, with the only change being the substitution of P exp( —igT“f’; Vidw") for exp(—ieQ f}; V,dw"),

where V7 is the gauge field, g is the gauge coupling constant,

path ordering of the exponential, starting with functions of x

T are the generators of the gauge group, and P denotes
placed on the left, and working towards functions of y on

the right. In Secs. II-IV we only considered interactions that involved one gauge boson, so path ordering the exponen-

tial makes no difference in any of the derivations given. H

owever, path ordering does make a difference when two

gauge bosons are involved, and we will briefly discuss these differences in this section.
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We begin with the two-gauge-boson-two-quark vertex (Fig. 5):

8*Sn\L
8Va(x)8VE(0)8¢h(y")8¢(2)

gZF;uz,vb(y:’x’ UvZ)= -

Ve =0

s L s n
=g2 [ d* 8(z—y) 3 o= ]

xP [ [7T(x -—wl)dw’l‘fyT”S(v—wz)dw§]6(y’—y)

=g* 3 Iy, x,v,2) . (34)

n=0

The path ordering operator in Eq. (34) is taken to order T and T, according to the relative positions of their associ-
ated integration variables (w, and w,) along the path from z to y. The important point is that a derivative with respect
to y (the limit of integration) yields the integrand evaluated at , so the path ordering places the associated generator on
the right. Thus, the ordering of 7% and T is determined by which integral is differentiated first, and repeated applica-

tions of the product rule will generate both orderings.
i(p'z—py'—q;x —qyv

By Fourier transforming Eq. (34) with e ( "and performing the derivatives, we find

T4Yp,q,,4,,p +q,+q,)= —%E(")(O){ (T°T*+T*T*)g""d, (p,q,,9,)+T°T%2p +4,)"[2(p +¢,)+ 4, 1, (p,42,91)
+TbTa(2p +q1 )#[2(}7 +q1 )+q2]vjn(p’qqu2)} > (35)

where

d,=d,(p,q1,9,), Jj.=j(P,4,91), (36)

and

dy=0, d,=1, d2=(‘11+‘12+l7)2+P2, d3=(q1+q2+p)4+(q1+q2+p)2p2+p4,

Jo=0, j1=0, j,=1, j3=(q,+q,+p)+(g,+p)*+p>. 7
In general we find, for n >0,
d,=d,_i(q,+q,+pP+p*" "V, j,=j, (¢, +q,+pP+h,_;, (38)
where
h,=h, _\(g,+pP+p¥r~1, 39)
and h,=0, h; =1. Using the results given in the Appendix we find
9, q,
v b P v b "
k
LT
1 a P n a p
q, 9,
FIG. 5. The vertex coupling two gauge bosons and two FIG. 6. The vertex coupling two-gauge bosons, two quarks,

quarks: g T***%(p,q.,q,,p +q,+q>). and one GB: g’TI'**"*<(p.q,,q,,k,p +k +q,+q,).
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}S

g T (p,q,,q,,p +q,+q,)
TT*+T°T*)g"”

=—g?| — B (3(p+q,+a,)—3(p)]
2p-(g;+q,)t(q,+q5)

(2p +g,)"[2(p +q,)+q; J*

2p+g,tgq)—2(p)  2(p+g,)—2(p)

+71°1? 5 > >
2(p +45)q, g1 2p-(qy+qy)+(q,+q,) 2p-q;+q;

+TbT“(2p +qM[2(p tg,)+q,]" | Zptg,+g)—32(p)  Z(p+g,)—Z(p) 40)
2(p +‘]1)‘42+‘1% ZP‘(41+42)+(‘]1+‘]2)2 21"‘11""1%

As in the case of one gauge boson, the vertices involving two gauge bosons and GB’s follow as simple generalizations
of the vertex without GB’s. The vertex for two gauge bosons, one GB, and two quarks (as shown in Fig. 6) is

iysg’
4]

gzrl‘-“"’b’c(p’ql,qz,k,p +k +q1 +q2):'— {}‘CF#G’Vb(P,quqZ)p +q1 +q2)

+THY(p +k,q,,9,,p +k +q,+g,)A} . 41
Introducing the notation

2g 1Y
2p-(q,+q,)t(q,+q,)

*(p,q1,42p T4, +q,)=— 5[2(p +g,+q,)—Z2(p)]

3(p+q,+q,)—2(p) 3(p +q,)—2(p)

2P'(111+‘J2)+(Q1+42)2 21’"12'“]%

(2p +q,)"[2(p +q,)+q; J*
2(p +45)-q,+q}

4 (2p +g, M [2(p +q,)+q, 1" S(p+q,+q,)—2(p) _ 3(p +4q,)—2(p) 42)
2p +41)9:+4¢3 2p-(g,+¢,)+ (g, +q,) 2p-q,+4qi
and
p'=p+tq tq,tk tk,, p"=p+tq,+q,, (43)
the vertex for two gauge bosons, two GB’s, and two quarks (as shown in Fig. 7) may be written as
2
F““’Vb’c’d(P,qx,QZ,kl,kz,P')=—#[ kckdr"“"’b(p,ql,qz,p”)+l"“""’b(p +k, +k2,q1,q2,p')kckd
0
+ AR (p +ky,q1,q4,p" + kDA AT (p +ky,q,,q5,p" +k ALY
—i—kckdl“‘“”b(p +ki,q1,9,,p" +k )+KCF”b’”“(p +ki,q9,,9,,p" +k, )Ae
—(TOAT oA+ TPAT A — TOANIT — TOAAIT O+ AT AT P+ AT PA4T )
XTH*Yp +k(,q1,95,p" k) tcodk—k,] . (44)

Note that in the sixth term, the indices a and b are inter- q,
changed. As before, all of these multi-gauge-boson ver- k, v b
tices can be checked using the WT identities. g~ p
VI. THE EFFECTIVE CHIRAL LAGRANGIAN « - =
1 ==
We can now calculate the effective action for photons c p
s . . . 2% a
and GB’s by integrating out the quarks; i.e., q
1

exp(—T[m,V, = fi)tﬁil)d:exp —fd“x d*y L,(x,y) |,

FIG. 7. The vertex coupling two-gauge bosons, two quarks,
(45) and two GB’s: g2I'****%4(p q,.q9,,k,,k,p").
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where L, is the gauged NCQM Lagrangian. The
effective action can be written as (dropping a constant
term)

(7 V,]=—Trln lS(x —y)— [d*z S (x —z)I(z,y)] ,

(46)
where
— 828,

int
SY(y)dP(z)

S (x —z) is the quark propagator, and S;,, is the interac-
tion part of the gauged action. The quark interactions
are represented by I(z,y) in Eq. (46), which is just minus
the interaction terms in the Lagrangian, with the quarks
fields left out. More explicitly,

I(z,y)= (47)

I=I+  +I,+I, +1I, + -, (48)
where the subscripts indicate the particles involved in the
interaction (the factors of 1 indicate that a term in the
Lagrangian with two identical fields contributes twice to
the corresponding vertex). Expanding out the In and
only keeping terms with one gauge field and two GB
fields, we find simply

T, V,1=Tr( 18Iy, +SI,SI,SI,
+1SI,SI,. +SI,,SI,) . (49)

A useful way to extract information from the effective
action is to compare its derivative expansion with a chiral
Lagrangian. A chiral Lagrangian is obtained by writing
down all possible terms for the interactions of GB’s
among themselves and with external fields that are con-
sistent with the symmetries of the theory. Each term has
an arbitrary coefficient which is undetermined by symme-
try arguments. Since only symmetry information has
been used, the chiral Lagrangian must generate a param-
etrization of the most general S matrix consistent with
the symmetries of the theory (as expressed by the general-
ized WT identities) [6,7]. The terms in the chiral La-
grangian are arranged in an expansion in powers of
derivatives, and usually one keeps only the first few terms
in such a derivative (or energy) expansion. Since the
gauged NCQM Lagrangian is chirally invariant, the
effective action must also enjoy this symmetry. Thus the
effective action must be equivalent to (the action associat-
ed with) a particular chiral Lagrangian [8], and we may
extract the coefficients of this effective chiral Lagrangian
for the NCQM by comparing the amplitudes derived
from the effective action with those derived from the
chiral Lagrangian.

The standard parametrization of the chiral Lagrangian
for three flavors of quarks is due to Gasser and Leutwyler
[7]. The lowest-order (second-order) term in the energy
J

4eN,

c
2
FO

eT*%%p,q,p +q)= TrQ (A“A*—APA%)

I*(k,p,q)

\ /
\\ /
L
7
FaVaVaV | )’ + /\/\M i + /‘\J\/\J’D)(\
7 .
/ AN
’
A}
// \\ \
y \
+ + +
\\ /
/ \
N K \

FIG. 8. The two-GB-photon amplitude: eI'**%(p,q,p +q).

expansion is [9]

L,=1F3Tt(D,U'D*U) , (50)
where
U(x)=exp —2im(x) ) (51)
F,

and D, is the gauge-covariant derivative:

D, U=3,U—i(V,+ A AU +iUA(V,—A[) . (52)
Here, VZ and AZ represent external SU(3) vector and
axial-vector gauge fields, respectively.

At fourth order in the energy expansion (dropping
terms that are irrelevant for our purposes) Gasser and
Leutwyler give

L,=—iLyTe(FR D*UD U+ FL D*U'D V)
+Ly Te(UTFR UFE™) + - - (53)
where

R — _ —
F,uv_ap.Rv ava [R;uRv] ’

L — _ —
F,,=o,L,—9o,L,—[L,,L,], (54)
R,=(V,+ A4\, L,=(V,— AA .

It is the coefficients Ly and L, that we would like to
determine from the NCQM. The coefficient Ly is phe-
nomenologically interesting since it is related to the
charge radius of the GB’s [10]. Also, Ly and L, are in-
volved in the determination of the decay m—yev [7].

If we calculate the amplitude which couples two GB’s
and one photon from the effective action (i.e., calculate
— 83T /8787’8 V), we find that it is given by the dia-
grams in Fig. 8, as we naively expected. It should be not-
ed that, in the calculation of the electromagnetic form
factor by Pagels and Stokar [11], these authors only in-
the second and third Feynman diagrams shown in Fig. 8.
Taking the number of quark “colors” to be N, the sum
of the diagrams in Fig. 8 gives

d*k
f (2m)* [k24+32K)][(k —p)*+3%k —p))[(k +¢)*+Z2k +¢@)] ~

(55)
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where
L
1k, g)= LT [3(k +q) = 201G (op,) +[20)+ 2k —p) [ 2k +9)+3(k —p)]
q9T4q
X{ kH[(k +q)-(k —p)+Z(k +¢q)3(k —p)]—(k —p)[k-(k +q)+Z(k)Z(k +q)]
+(k +g¥[k-(k —p)+3(k)Z(k —p)]} , (56)
and
G (k,p,q)=23(k —p)[k*+Z2(k)][(k +¢)*+ 3k +q)]
—[k-(k —p)+=(k)Z(k —p)][Z(k)+Z(k —p)][(k +g)*+Z*(k +q)]
—[(k +q)-(k —p)+=(k +q)2(k —p)][Z(k +¢)+Z(k —p)][k*+=*(k)]
+[Z(k)+2(k —p)][Z(k +q)+Z(k —p)]
X[k-(k —p)2(k +q)—k-(k +q)2(k —p)+(k +q)-(k —p)2(k)+Z(k)Z(k —p)Z(k +q)] . (57)
[
Taylor expanding to first order in the external momen- LEQM=L11Tr(D2UD2UT)+L12Tr()(TD2U +xD2U") .
tum, we find
(60)
a,b 4eNC bya
el *%(p,q,p +q)= 72 TrQ[A%A%](2p +q)* For our procedure to be consistent we must make the
0 comparison of our effective action to a chiral Lagrangian
d*k 43X k)—2k*Z(k)2'(k) that contains these terms. Once the coefficients L,;; and
f 2m)* [k2+32(k)]? L, are determined, then the equations of motion may be

(58)
Using Eq. (16) of Ref. [2] for F3 we find
e %p g.p +q)=2e TrQ [A%,A°1(2p +q)*,  (59)

which is the same as the gauge vertex derived from the
lowest-order chiral Lagrangian [Eq. (50)] (when Wick ro-
tated to Euclidean space). The fact that to this order in
the energy expansion the amplitude comes out properly
normalized and independent of Z(p) is a consistency
check on our gauging procedure.

To go further we must note that in obtaining L,
Gasser and Leutwyler [7] have used the equations of
motion (since the terms in .L, are only needed at tree or-
der) to eliminate two other possible interaction terms
from .L,:

used to rewrite Lgqgy as a linear function of terms al-
ready contained in L.
By Taylor expanding Eq. (55) to third order in momen-
tum we find
el *%p,q,p +q)
—eN,

 4r’F 2

TrQ (A%, A%){p*I,p*+1,p-q +1;q7)

+q*Ip*+Isp-q+Isq™)} ,
(61)

where the coefficients I, through I, are a series of quite
messy integrals involving 2(p). We will not reproduce
these integrals here; they are given in Ref. [12]. The
fourth-order chiral Lagrangian [Egs. (53) and (60)] gives

|
ey *%p,q,p +q)= —F%e TrQ [A%A°]{ p#[4L \p*+4L 1p-q + (2L +Lg)g]
+q"[2L11p2+(2L11—Lg)p-q+L11q2]} . (62)
[

Thus we obtain the coefficients Ly and L,;, with several
independent checks on their values.

We now turn to calculating L,,. The term with fewest
fields in the L, term in the fourth-order chiral Lagrang-
ian, Eq. (53), involves one GB, one vector gauge field, and
one axial-vector gauge field. We could calculate the
coefficient of this term in the effective chiral Lagrangian
derived from the underlying NCQM (and thus determine
L ,,) by introducing vector and axial-vector gauge fields

into the model. Since the GB fields do not transform
linearly under axial transformations, an expansion in
powers of GB fields proves to be awkward. An alterna-
tive method for calculating L, can be seen by noting
that there is a term involving two GB fields, and two vec-
tor gauge fields present in the L, term. The coefficient
of this term can be calculated using the techniques we
have already developed.

Calculating the amplitude which couples two GB’s and
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two vector gauge fields from this effective action (i.e., cal-
culating —84F/8770877d8V25Vﬁ ), we find that the ampli-
tude is given by the diagrams in Fig. 9. Our calculations
will be simplified a great deal if we consider the limit
where the momenta of the GB’s vanish. In this limit
most of the contributions to the two-GB, two-gauge-
boson vertex vanish. For vanishing GB momenta, we
Taylor expand the sum of diagrams in Fig. 9 in the
gauge-boson momentum g. Keeping only terms of zeroth
order in g, we find

gZF,llw,vb,c,d( O,q, —q, 0)

ig?N,
- _%Jlg’”Tr( INATAINL + 2000902
167°F§
— AAINIRL — A AN LAD
_}"ckd}‘b)\'a‘)\,c)\,b)\,a)\d) , 63)

where J,| represents a messy integral. The second-order
chiral Lagrangian [Eq. (50)] gives the amplitude

gZI-\;ILa, vb,c, d( O, q9,—q, 0 )
= —2ig 2g " Tr(2AA°AIAL 4+ 2AAEAIA

_ Ackd)\,akb— }\ckakb}\'d
— AAIAPAT— AAPAAD) (64)
The requirement that
JlNc
Fi=— (65)
0 3277

(which can be verified numerically) is another check on
our calculations.

The terms of second order in g give an amplitude of the
form

gzr;zm,vb,c,d( 0’ q9 _q,o)

2N,
= Jenirz 298 a4
X Tr(2AACAINL + 20 APA9AT— A AL
— ACACALAG — AAGALAE — ACALAIAY) | (66)

where J, and J; are again some messy integrals which
will not be given here (see Ref. [12]). The fourth-order

i:@f W o
el e

+ crossed terms

FIG. 9. The amplitude coupling two gauge bosons and two
GB: gIr*"%4p q,,4,,p +q,+q,). The crossed terms corre-
spond to the 15 other ways to assign particles to the legs.

chiral Lagrangian [Egs. (53) and (60)], taking vanishing
GB momentum, gives

gZI-\,sz,vb,c,d( O,q, —q,O)
8 2 v v
= —152 (L1ong# —(Ly;+Lyo)g*q")
0

AAGAINL
AAOAILY) (67)

X Tr(2AAAIAL+ 20N PA9NT —
— )\C)»a)\,b)\d‘~ A,C}\.d)\,b)»a _

Thus we have determined L, and, since we have already
determined L ,, we again have some checks on our calcu-
lations.

Finally, we will present some numerical results. To do
this we must specify the functional form of the dynamical
mass 2(p). From Politzer’s study of the operator-
product expansion [13], it is known that in an asymptoti-
cally free gauge theory =(q) should fall off asymptotically
as 1/g% As a simple extrapolation of this asymptotic
form, which does not behave wildly as g? approaches
zero, we have used

(4 +1)m?

Q=5 . 68
(q) it Aq? (68)

The normalization is chosen such that (¢ =m)=m.

TABLE 1. Coupling constants of the effective chiral Lagrangian for different values of the

parameter A.

A=1 4=1 A=0
_ N, 3
L, 5.94X107° 5.84X107° > =6.33X10
T’
—6. -3 —4.96X1073 =-—3.17%x107?
L, 6.76 X 10 9617
L, 2.98x1073 3.03x1073 =3.17X1073

962
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The necessary Taylor expansions were done using MAPLE,
and the resulting expressions were integrated numerically
using Eq. (68) for the dynamical mass with different
values of 4. The results (with N, =3) are given in Table
I

We note that the column A4 =0 corresponds to the lo-
cal limit of the model. This special case is essentially
equivalent to the nonlinear 0 model, and equivalent re-
sults for Ly and L, have been obtained in this limit by
other authors [14]. We also note that the coefficient L,
is the most sensitive to how slowly or quickly =(p) falls
off.

To make a meaningful comparison with the experimen-
tally determined values [7] of Ly and L,,, both sets of
values should be renormalized at the same scale. The
values given in Table I are renormalized at the “matching
scale” [15] where the quarks are integrated out (this scale
should be taken to be roughly 2m). Thus the value of m
must first be determined, and then L, and L, can be re-
normalized down to the scale used by Gasser and
Leutwyler in Ref. [7]. This procedure has been carried
out in Ref. [2]. It is found that the results of the NCQM
are in surprisingly good agreement with experiment.

VII. CONCLUSIONS

We have described how to gauge nonlocal Lagrang-
ians, and how to derive the Feynman rules. The method
has been applied in detail to the NCQM. In particular,
this technique has enabled us to extract the coupling con-
stants Lg, Ly, and L;; of the effective chiral Lagrangian
for the model. The value of L, may also be of interest in
technicolor models, where the analogue of L, can induce
large radiative corrections to the left-right asymmetry
[16]. As seen in Table I, L, is smaller for a more slowly
falling form of 2(p), and a more slowly falling =(p) is ex-
pected in most ‘“‘walking” technicolor theories.
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APPENDIX

We present here some proofs by induction which are
used above. First we wish to prove that

(g +p)*"—p*=(q*+2p-q)g, , (A1)
where g, is defined by

g, =(qg+p*" " V+plg, (A2)
and g, =1 Note that (g +p)—p*

=(q*+2p-q)[(¢ +p)*+p?], so that [from Eq. (23)]

g,=(q+p)+p*=f,. Suppose that Eq. (A1) is true for
some particular n, and consider

(q+p)2(n+l)_p2(n+1)
:(q2+2p_q +p2)(q +p)2n_P2(n+l)

=(q’+2p-q)(q +p)*"+p2[(g +p)*"—p*].  (A3)

By assumption we then have
(g +pPntD—p2ntD=(g2 405 .0) (g +p*"+pg, ],
(A4)
and by the definition of g, , ; we have
(g +pPr TV —p2ntD=(g242p.0)0 | (AS)

which completes the proof. We would now like to prove
that f,=g,, for n >0, where f, is defined in Egs. (23)
and (24). Suppose that this is true for a particular n (we
have demonstrated this above for n =1 and n =2); then
by the definition of f, ,; we have

fov1=Fulg +pP+p* . (A6)
Then by assumption we have

fos1=8u(@*+2p-q +pH)+p>. (A7)
Use of the preceding lemma yields

Sosr=(q+p)"—p*'+g,p*+p™", (A8)
which, by the definition of g, , |, gives us

Sn41=8n+1> (A9)

which was to be proved.

We would now like to find analogous results for d,, and
Jn» which are defined in Egs. (36) through (39). From
Egs. (A1) and (A9), we know that

(q + + )2n_ 2n
y= TP TP (A10)
2p-(q,+q,)+ (g, +q,)
and
(q +p)2n_p2n
o= ———— (A11)
2p-q,t+q3

Note that d;—h,=0, d,—h,=[q]+2(p +4,)q, 1js>
and d;—h;=[q?+2(p +q,)q,1j;. We will again
proceed by induction. Suppose that for some particular
n, 1q1+2(p +45)°q11,—1=d, 1 —h,_y; then, by the
definition of j, [Eq. (38)],

(g1 +2(p +4,)9,1j, =[] +2(p +45)-q,]
X[jn-1lq, +‘12+P)2+hn~1] .
(A12)

By assumption, we then have
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(g} +2(p +42)-q,)j,=(d,—1—h,_)q, +q,+p)*+ (g +2(p +q,)-9, 11,

=d, (g, t4q, +P)2_hn71(‘12 +P)2

=d,,~,(q1+q2+p)2+p2(n71)_[hn_l(q2+p)2+p2(n—1>]

=d,—h, ,

(A13)

where we have used the definitions of d,, and A, [Egs. (38) and (39)]. Thus,

d,—h,
p+ay)q,+qt

]n.—2(

As shown above for d,, we also have

(g +p)"—p*"

h —
" 2p-g,+q3

(A14)

(A15)
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